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MODELING OF FAULT PREDICTION IN
SOFTWARE SYSTEMS

DEEPALI GUPTA

ABSTRACT

Prediction of fault-prone modules provides one way to support software quality engineering
through improved scheduling and project control. Methodologies and techniques for
predicting the testing effort, monitoring process costs, and measuring results can help in
increasing efficiency of software testing. Predicting faults early in the software life cycle
can be used to improve software process control and achieve high software reliability.

In the present work, different machine learning algorithms and neural network techniques
are evaluated on two different real-time software defect datasets. The results show that
when all the prediction techniques are evaluated, then best algorithm for classification of
the software components into faulty/fault-free systems is found to be Generalized
Regression Neural Networks.

Keywords: Fault prediction, Software metrics, Software quality, Machine learning
techniques and Neural Network algorithms.

1. INTRODUCTION

A software fault is a defect that causes software failure in an executable product. When
a software system is developed, the majority of faults are found in a few of its modules.
In most of the cases, 55% of faults exist within 20% of source code. It is, therefore,
much of interest is to find out fault-prone software modules at early stage of a project
[7]. Timely predictions of faults in software modules can be used to direct cost-effective
quality enhancement efforts to modules that are likely to have a high number of faults
[3]. Using software complexity measures, the techniques build models, which classify
components as likely to contain faults or not. Early detection of fault-prone software
components enables verification experts to concentrate their time and resources on the
problem areas of the software system under development [4].

Metrics is defined as “The continuous application of measurement based techniques
to the software development process and its products to supply meaningful and timely
management information, together with the use of those techniques to improve that
process and its products”. The attributes of effective software metrics are:

e  Simple and Computable.

e  Empirically and Intuitively Persuasive.
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° Consistent Results.
° Consistent in the Use of Units and Dimensions.
e  Programming Language Independent.

To predict the fault in software data a variety of techniques have been proposed which
includes statistical method, machine learning methods and neural network techniques.

e  Statistical methods are used to find an explicit numerical formula, which
determines completely how classification is performed.

e  Machine learning is concerned with the design and development of algorithms
and techniques to extract rules and patterns out of massive data sets.

e  Neural networks, which have been already applied in software engineering
applications, to build reliability growth models predict the gross change or
reusability metrics. A neural network is trained to reproduce a given set of
correct classification examples, instead to produce formulas or rules [8]. Neural
networks are non-linear sophisticated modeling techniques that are able to
model complex functions. Neural network techniques are used when exact
nature of input and outputs is not known. A key feature is that they learn the
relationship between input and output through training.

Machine learning capabilities create applications that are rugged, self-adapting,
easier to maintain and often more fault tolerant than conventional systems. Learning
systems also provide the core mechanism for powerful predictive and classification
models that fine tune their abilities as they gather more and more experience. Machine
learning deals with the issue of how to build programs that improve their performance
at some task through experience. There is an existence of a correlation between a
reasonable set of static metrics and software fault proneness [1].

In this paper, various machine learning algorithms and Neural Network techniques
are explored and comparative analysis is performed for the prediction of faults in software
systems. The rest of the paper is organized as follows. Section 2 gives overview of the
problem formulation. Results and Discussion is presented in Section 3. Section 4 focuses
on conclusion of this work.

2. PROBLEM FORMULATION

Software quality prediction models seek to predict quality factors such as whether a
component is fault prone or not. Methods for identifying fault-prone software modules
support helps to improve resource planning and scheduling as well as facilitating cost
avoidance by effective verification [5]. Software quality models seek to predict quality
factors of software components based on product and process attributes. The ability of
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software quality models to accurately identify critical components allows for the
application of focused verification activities ranging from manual inspection to
automated formal analysis methods [9].

Prediction of fault-prone modules:

(1) Supports software quality engineering through improved scheduling and project
control.

(2) Can be a key step towards steering the software testing and improving the
effectiveness of the whole process by planning and executing testing activities.

(3) Enables effective discovery and identification of defects.

(4) Enables the verification and validation activities focused on critical software
components.

(5) Used to improve software process control and achieve high software reliability.

(6) Can be used to direct cost-effective quality enhancement efforts to modules
that are likely to have a high number of faults.

A wide variety of techniques have been proposed [2]. The modeling techniques cover
the main classification paradigms, including principal component analysis, discriminate
analysis, logistic regression, logical classification models and layered neural
networks [6].

3. RESULTS AND DISCUSSION

The first step is to find the structural code and design attributes of software systems i.e.
software metrics. So, the real-time defect data sets used are taken from the NASA’s
MDP (Metric Data Program) data repository, available online at Attp.://mdp.ivv.nasa.gov.
The CMldata is obtained from a spacecraft instrument, written in C, containing
approximately 505 modules. The PC1 data is collected from a flight software system
coded in C, containing 1107 modules.

Figure 1 shows the CM1 Graphical representation of details of the output of software
where label i.e. error count is meant for output and is equal to the number of errors and
the count tells the number of occurrences of that label in the CM1 data set. And the
PC1 Graphical representation of details of the output of software is shown in Figure 2.

The next step is to find the suitable algorithm for classification of the software
components into faulty/fault-free systems. The algorithms which are explored are already
built java classes in WEKA project [10]. For this a variety of many machine learning
algorithms and neural network techniques are analyzed. The model is implemented
and then best algorithm is found.
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Figure 1: CM1 Graphical Details of the Output of Software
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Figure 2: PC1 Graphical Details of the Output of Software

The algorithms are evaluated on the basis of the following criteria:

The WEKA software computes the mean absolute error, root mean squared error,
relative absolute error and root relative squared error. However, the most commonly
reported error is the mean absolute error and root mean squared error.

The root mean squared error is more sensitive to outliers in the data than the mean
absolute error. In order to minimize the effect of outliers, mean absolute error is chosen
as the standard error. The prediction technique having least value of mean absolute
error is chosen as the best prediction technique.

The mean absolute error and root mean squared error is calculated for all the classes
of machine learning algorithms and neural network techniques. The graphical user
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interface is designed in MATLAB for various neural network techniques as shown in
Figure 3.
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Figure 3: GUI for Neural Network Techniques

The graphical user interface designed for all the classes of machine learning
algorithms is shown in Figure 4.
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Figure 4: GUI for Machine Learning Algorithms
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When all the classes of prediction techniques were evaluated then:

For Bayes class of machine learning algorithms, the best algorithm comes out
to be ComplementNaiveBayes with MAE value 0.062 for CM1 project and
0.0337 for PC1 project.

For Functions class of machine learning algorithms, the best algorithm comes
out to be MultilayerPerceptron with MAE value 0.04 for CM1 project and
0.0327 for PC1 project.

For Lazy class of machine learning algorithms, the best algorithm comes out
to be IB1 with MAE value 0.0528 for CM1 project and 0.0289 for PC1 project.

For Meta class of machine learning algorithms, the best algorithm comes out
to be Grading with MAE value 0.0317 for CM1 project and 0.0229 for PC1
project.

For Misc class of machine learning algorithms, the best algorithm comes out
to be DecisionStump with MAE value 0.0565 for CM1 project and 0.0417 for
PC1 project.

For Tree class of machine learning algorithms, the best algorithm comes out
to be RandomTree with MAE value 0.0502 for CM1 project and 0.0316 for
PC1 project.

Among the Neural Network Techniques, the best algorithm comes out to be
GRNN with MAE value 0.0020 for CM1 project and 0.0127 for PC1 project.

Finally the best model is build and evaluated which comes out to be Generalized
Regression Networks as shown in Table 1.

Table 1
Results of All Classes of Machine Learning and Neural Network Techniques

Algorithm Projects

CM1 PCI

MAE RMSE MAE RMSE

Complement Naive Bayes 0.062 0.2491 0.0337 0.1836
Multilayer Perceptron 0.04 0.1477 0.0327 0.1468
IB1 0.0528 0.2298 0.0289 0.17
Grading 0.0317 0.178 0.0229 0.1513
Decision Stump 0.0565 0.1706 0.0417 0.1448
Random Tree 0.0502 0.224 0.0316 0.1763
GRNN 0.0020 0.0009 0.0127 0.0138
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The graphical user interface for GRNN shows detail of Generalized Regression
Neural Networks as shown in Figure 5.
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Figure 5: Generalized Regression Neural Networks

The testing and training of data is done for Generalized Regression Neural Networks
and results are analyzed and compared. So, Generalized Regression Networks gives
the best performance.

4. CONCLUSION

Fault prediction is used to improve software process control and achieve high software
reliability. On comparing all the classes of machine learning algorithms, it is observed
that Grading is better technique as compared with other classes of machine learning
algorithms. On comparing various neural network techniques, the mean absolute error
in case of Generalized Regression Neural Networks comes out to be 0.0020 for CM1
project and 0.0127 for PC1 project, which is much lower as compared to other prediction
techniques.

It is therefore, concluded the model is implemented and the best algorithm for
classification of the software components into faulty/fault-free systems is found to be
Generalized Regression Neural Networks.
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The mean absolute error value of proposed derived model is far less than previously
proposed algorithms in literature for production of fault tolerance in software systems.
The developed model can be used for classifying a faulty system from non-faulty system
on the basis of structural attributes of the software systems.
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