International Journal of Information Technology and Knowledge Management
July-December 2008, Volume 1, No. 2, pp. 259-266

MODELING OF FAULT PREDICTION IN
SOFTWARE SYSTEMS

DEEPALI GUPTA

ABSTRACT

Prediction of fault-prone modules provides one way to support software quality engineering
through improved scheduling and project control. Methodologies and techniques for
predicting the testing effort, monitoring process costs, and measuring results can help in
increasing efficiency of software testing. Predicting faults early in the software life cycle
can be used to improve software process control and achieve high software reliability.

In the present work, different machine learning algorithms and neural network techniques
are evaluated on two different real-time software defect datasets. The results show that
when all the prediction techniques are evaluated, then best algorithm for classification of
the software components into faulty/fault-free systems is found to be Generalized
Regression Neural Networks.

Keywords: Fault prediction, Software metrics, Software quality, Machine learning
techniques and Neural Network algorithms.

1. INTRODUCTION

A software fault is a defect that causes software failure in an executable product. When
a software system is developed, the majority of faults are found in a few of its modules.
In most of the cases, 55% of faults exist within 20% of source code. It is, therefore,
much of interest is to find out fault-prone software modules at early stage of a project
[7]. Timely predictions of faults in software modules can be used to direct cost-effective
quality enhancement efforts to modules that are likely to have a high number of faults
[3]. Using software complexity measures, the techniques build models, which classify
components as likely to contain faults or not. Early detection of fault-prone software
components enables verification experts to concentrate their time and resources on the
problem areas of the software system under development [4].

Metrics is defined as “The continuous application of measurement based techniques
to the software development process and its products to supply meaningful and timely
management information, together with the use of those techniques to improve that
process and its products”. The attributes of effective software metrics are:

e Simple and Computable.

e Empirically and Intuitively Persuasive.

260 DeepaLr GupTA

° Consistent Results.
° Consistent in the Use of Units and Dimensions.
e Programming Language Independent.

To predict the fault in software data a variety of techniques have been proposed which
includes statistical method, machine learning methods and neural network techniques.

e Statistical methods are used to find an explicit numerical formula, which
determines completely how classification is performed.

e Machine learning is concerned with the design and development of algorithms
and techniques to extract rules and patterns out of massive data sets.

e Neural networks, which have been already applied in software engineering
applications, to build reliability growth models predict the gross change or
reusability metrics. A neural network is trained to reproduce a given set of
correct classification examples, instead to produce formulas or rules [8]. Neural
networks are non-linear sophisticated modeling techniques that are able to
model complex functions. Neural network techniques are used when exact
nature of input and outputs is not known. A key feature is that they learn the
relationship between input and output through training.

Machine learning capabilities create applications that are rugged, self-adapting,
easier to maintain and often more fault tolerant than conventional systems. Learning
systems also provide the core mechanism for powerful predictive and classification
models that fine tune their abilities as they gather more and more experience. Machine
learning deals with the issue of how to build programs that improve their performance
at some task through experience. There is an existence of a correlation between a
reasonable set of static metrics and software fault proneness [1].

In this paper, various machine learning algorithms and Neural Network techniques
are explored and comparative analysis is performed for the prediction of faults in software
systems. The rest of the paper is organized as follows. Section 2 gives overview of the
problem formulation. Results and Discussion is presented in Section 3. Section 4 focuses
on conclusion of this work.

2. PROBLEM FORMULATION

Software quality prediction models seek to predict quality factors such as whether a
component is fault prone or not. Methods for identifying fault-prone software modules
support helps to improve resource planning and scheduling as well as facilitating cost
avoidance by effective verification [5]. Software quality models seek to predict quality
factors of software components based on product and process attributes. The ability of

MODELING OF FAULT PREDICTION IN SOFTWARE SYSTEMS 261

software quality models to accurately identify critical components allows for the
application of focused verification activities ranging from manual inspection to
automated formal analysis methods [9].

Prediction of fault-prone modules:

(1) Supports software quality engineering through improved scheduling and project
control.

(2) Can be a key step towards steering the software testing and improving the
effectiveness of the whole process by planning and executing testing activities.

(3) Enables effective discovery and identification of defects.

(4) Enables the verification and validation activities focused on critical software
components.

(5) Used to improve software process control and achieve high software reliability.

(6) Can be used to direct cost-effective quality enhancement efforts to modules
that are likely to have a high number of faults.

A wide variety of techniques have been proposed [2]. The modeling techniques cover
the main classification paradigms, including principal component analysis, discriminate
analysis, logistic regression, logical classification models and layered neural
networks [6].

3. RESULTS AND DISCUSSION

The first step is to find the structural code and design attributes of software systems i.e.
software metrics. So, the real-time defect data sets used are taken from the NASA’s
MDP (Metric Data Program) data repository, available online at Attp.://mdp.ivv.nasa.gov.
The CMldata is obtained from a spacecraft instrument, written in C, containing
approximately 505 modules. The PC1 data is collected from a flight software system
coded in C, containing 1107 modules.

Figure 1 shows the CM1 Graphical representation of details of the output of software
where label i.e. error count is meant for output and is equal to the number of errors and
the count tells the number of occurrences of that label in the CM1 data set. And the
PC1 Graphical representation of details of the output of software is shown in Figure 2.

The next step is to find the suitable algorithm for classification of the software
components into faulty/fault-free systems. The algorithms which are explored are already
built java classes in WEKA project [10]. For this a variety of many machine learning
algorithms and neural network techniques are analyzed. The model is implemented
and then best algorithm is found.

262 DeeraLl GUPTA

500 4 457
450 -

400 -
350 -
300 -
250 -
200 -
150 -
100 -
50 - 6

COUNT

LABEL

Figure 1: CM1 Graphical Details of the Output of Software

1200 -
1031

1000

800

600

COUNT

400

200

46 14 10 > 4

0 -
LABEL

Figure 2: PC1 Graphical Details of the Output of Software

The algorithms are evaluated on the basis of the following criteria:

The WEKA software computes the mean absolute error, root mean squared error,
relative absolute error and root relative squared error. However, the most commonly
reported error is the mean absolute error and root mean squared error.

The root mean squared error is more sensitive to outliers in the data than the mean
absolute error. In order to minimize the effect of outliers, mean absolute error is chosen
as the standard error. The prediction technique having least value of mean absolute
error is chosen as the best prediction technique.

The mean absolute error and root mean squared error is calculated for all the classes
of machine learning algorithms and neural network techniques. The graphical user

MODELING OF FAULT PREDICTION IN SOFTWARE SYSTEMS 263

interface is designed in MATLAB for various neural network techniques as shown in
Figure 3.

Fie Machine Learning Algarithms »
Gradert Descent Backpropagation
Batch Gradent Descent with momertum
Wnrabie Learning Rate

F T prk Algorithms on the Data
Suseiant B propagaten
Fietcher-Reaves conpgste gradent slgonitfen
Poler-Ribkere Update wriugste g sdent sgorthm
Powesll-Biaaly Restarts conjugate gradient slgarithm
Suabed Conhudate Gl conpaiate Oradent akaothin
QuaskHewton BFGS Algorithm
MG D SE Sarant Akt
Leveniberg-Marguardt Algorithen
Severshzed Rlegressicn Notrerks

| SoF Grganking Mapfhetrart.

Figure 3: GUI for Neural Network Techniques

The graphical user interface designed for all the classes of machine learning
algorithms is shown in Figure 4.

Depalli_main
Fie NN Algorithem

Narwe Bayes Algorithm
| tnomial Hawve Bayes
Updiatesbie Maive Bayes Algorithem
Pleass use tl Logstic Regession Modsing itk Algorithms on the Data
Multdayer Ferceptron Algonthm
| REF Metworh Algorthm
| Unar Logsiic Akgeriben
Sequentisl Minmal Optimization figonthm
[Nearest-reighbour Classifier |
K-nearest Neghbours Classfier
| K ke based Clssifier
| Locally Wieighted Learring algorithm
Addditive Fiegression dlgorthm
| Aitrinte Selected Classifer
Bagonyg Algorttm
[T ——
| Cross-valdatun Porsmater Selection
Decorste Algorkhm
| Geadng gorthen
Additve Logst Regression
| Metatost Rigerithm
: MulEnosting Algonthm
Metisclassier For Muki-Class Datasets
| ol Chass Classiber
Racedincremant sl ogtioost
| Random Committes Algorthm
| stackng Migoethm
| StackigC tlgerthen
| voe aigankhm
HyperFipe Algorithm
| Vioting Fasture Intervals Algorithem
DecsonStmp Algorithm
| Pruned € 4.5 Decision Tree Agorthm

1 et Mndad Tras Al hen

Figure 4: GUI for Machine Learning Algorithms

264

DeepaLr GupTA

When all the classes of prediction techniques were evaluated then:

For Bayes class of machine learning algorithms, the best algorithm comes out
to be ComplementNaiveBayes with MAE value 0.062 for CM1 project and
0.0337 for PC1 project.

For Functions class of machine learning algorithms, the best algorithm comes
out to be MultilayerPerceptron with MAE value 0.04 for CM1 project and
0.0327 for PC1 project.

For Lazy class of machine learning algorithms, the best algorithm comes out
to be IB1 with MAE value 0.0528 for CM1 project and 0.0289 for PC1 project.

For Meta class of machine learning algorithms, the best algorithm comes out
to be Grading with MAE value 0.0317 for CM1 project and 0.0229 for PC1
project.

For Misc class of machine learning algorithms, the best algorithm comes out
to be DecisionStump with MAE value 0.0565 for CM1 project and 0.0417 for
PC1 project.

For Tree class of machine learning algorithms, the best algorithm comes out
to be RandomTree with MAE value 0.0502 for CM1 project and 0.0316 for
PC1 project.

Among the Neural Network Techniques, the best algorithm comes out to be
GRNN with MAE value 0.0020 for CM1 project and 0.0127 for PC1 project.

Finally the best model is build and evaluated which comes out to be Generalized
Regression Networks as shown in Table 1.

Table 1
Results of All Classes of Machine Learning and Neural Network Techniques

Algorithm Projects

CM1 PCI

MAE RMSE MAE RMSE

Complement Naive Bayes 0.062 0.2491 0.0337 0.1836
Multilayer Perceptron 0.04 0.1477 0.0327 0.1468
IB1 0.0528 0.2298 0.0289 0.17
Grading 0.0317 0.178 0.0229 0.1513
Decision Stump 0.0565 0.1706 0.0417 0.1448
Random Tree 0.0502 0.224 0.0316 0.1763
GRNN 0.0020 0.0009 0.0127 0.0138

MODELING OF FAULT PREDICTION IN SOFTWARE SYSTEMS 265

The graphical user interface for GRNN shows detail of Generalized Regression
Neural Networks as shown in Figure 5.

TR R S .
D &Ll o WA | F | coretveowy | oy -

Pis W Hgorthes Maching Learming Algorkfurs Best Aigorithn
Shordcuis B oo Add (¥ Wb Saer
Carresd (rectary - ..y fechdepalll_work P X |Comanand Winde
Bor i -

N,._‘ﬂ [Fin Typ ™ To get stacy FRESE USH tha Menu for Apphking Meural Metwork goritrms on the Data
[Depat_mmsn g Ficle -
[Depati_msn m Wi 4 PR
[el fdsitaeRege Wk

el SlinblaSelec MAR p—— Comrunanirid Fimgrmmorn Makacd 1 o fusind snd Flaadk I Tosng
gmlj-wrn m Ml

tevil_birpaiet m My 1

M il Clasmifcatan WAk 1 E
[eval_Complamantti = MAa
M wval_CvParamater . WAk
[sl DecimonStum = Wik
[wval_Dicurate m Miaa
sl Fazdmn MAn sCgs =

X

L3
Comrmaind [istnry P E | mvs.lang.Sor
Bdes JLAZSOT LD:AE FE --k -

—wnich gt

- mdit [
W-h== LLFES0T L2001 PE ==k

—dmpalli_main

el

—is

—edit BEgS =
#-4== ILA2A0T 1811k PE ==h

—dmpalli_main S8va. Lasg. SrEang(] o
W= 1LFSF0T D040 PA ==k

.. b

b== 1157407 E5:05 FE ==& “Bihey dec\depalii_workhCHoneRvoorlount .arf’
== 1/OT B0l PH ==h
== 13/7/07 1:08 PR ==t

§== 10/WOT 4104 FA --% - o

Figure 5: Generalized Regression Neural Networks

The testing and training of data is done for Generalized Regression Neural Networks
and results are analyzed and compared. So, Generalized Regression Networks gives
the best performance.

4. CONCLUSION

Fault prediction is used to improve software process control and achieve high software
reliability. On comparing all the classes of machine learning algorithms, it is observed
that Grading is better technique as compared with other classes of machine learning
algorithms. On comparing various neural network techniques, the mean absolute error
in case of Generalized Regression Neural Networks comes out to be 0.0020 for CM1
project and 0.0127 for PC1 project, which is much lower as compared to other prediction
techniques.

It is therefore, concluded the model is implemented and the best algorithm for
classification of the software components into faulty/fault-free systems is found to be
Generalized Regression Neural Networks.

266 DeepaLr GupTA

The mean absolute error value of proposed derived model is far less than previously
proposed algorithms in literature for production of fault tolerance in software systems.
The developed model can be used for classifying a faulty system from non-faulty system
on the basis of structural attributes of the software systems.

REFERENCES

[1] Fenton, N. E. and Neil, M., “A Critique of Software Defect Prediction Models”, IEEE Trans.
Software Engineering, Bellini, 1. Bruno, P. Nesi, D. Rogai, University of Florence, 25, (5)
(Sep 1999), 675—689.

[2] Lanubile F., Lonigro A., and Visaggio G. “Comparing Models for Identifying Fault-Prone
Software Components”, Proceedings of Seventh International Conference on Software
Engineering and Knowledge Engineering, (June 1995), 12—19.

[3] Giovanni Denaro, “Estimating Software Fault-Proneness for Tuning Testing Activities”
Proceedings of the 22nd International Conference on Software Engineering (ICSE2000),
Limerick, Ireland, (June 2000).

[4] Mahaweerawat, A., “Fault-Prediction in Object Oriented Software’s using Neural Network
Techniques”, Advanced Virtual and Intelligent Computing Center (AVIC), Department of
Mathematics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 1-8.

[5] Runeson, Clacs Wohlin and Magnus C. Ohlsson, “A Proposal for Comparison of Models for
Identification of Fault-Proneness”, Dept. of Communication Systems, Lund University, LNLS
2188, (2001), 341-355.

[6] Quah, T. and Thwin, M., “Application of Neural Networks for Predicting Software
Development Faults Using Object-Oriented Metrics” Proceedings of Ninth International
Conference on Neural Information Processing (ICONIP’02), 5, (2002), 2312-2316.

[7] Saida Benlarbi, Khaled El Emam, Nishith Geol, “Issues in Validating Object-Oriented Metrics
for Early Risk Prediction”, by Cistel Technology 210 Colonnade Road Suite 204 Nepean,
Ontario Canada K2E 7L5, (1999).

[8] Eric Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance in
Microprocessors”, Proceedings of the Twenty-Ninth Annual International Symposium on
Fault-Tolerant Computing, June 15-18, 1999, 84-90.

[9] Bellini P., “Comparing Fault-Proneness Estimation Models”, 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS’05), (2005), 205-214.

[10] WEKA (2007), www.cs.waikato.ac.nz/~ml/weka/.

Deepali Gupta

Department of Computer Science
GIMT, Kurukshetra University
Haryana, India

E-mail: deepali_gupta2000@yahoo.com

